96 research outputs found

    A comprehensive Model of the Spatio-Temporal Stem Cell and Tissue Organisation in the Intestinal Crypt

    Get PDF
    We introduce a novel dynamic model of stem cell and tissue organisation in murine intestinal crypts. Integrating the molecular, cellular and tissue level of description, this model links a broad spectrum of experimental observations encompassing spatially confined cell proliferation, directed cell migration, multiple cell lineage decisions and clonal competition. Using computational simulations we demonstrate that the model is capable of quantitatively describing and predicting the dynamic behaviour of the intestinal tissue during steady state as well as after cell damage and following selective gain or loss of gene function manipulations affecting Wnt- and Notch-signalling. Our simulation results suggest that reversibility and flexibility of cellular decisions are key elements of robust tissue organisation of the intestine. We predict that the tissue should be able to fully recover after complete elimination of cellular subpopulations including subpopulations deemed to be functional stem cells. This challenges current views of tissue stem cell organisation

    A Comprehensive Model of the Spatio-Temporal Stem Cell and Tissue Organisation in the Intestinal Crypt

    Get PDF
    We introduce a novel dynamic model of stem cell and tissue organisation in murine intestinal crypts. Integrating the molecular, cellular and tissue level of description, this model links a broad spectrum of experimental observations encompassing spatially confined cell proliferation, directed cell migration, multiple cell lineage decisions and clonal competition

    Lymphocyte subsets and the role of Th1/Th2 balance in stressed chronic pain patients

    Get PDF
    Background: The complex regional pain syndrome (CRPS) and fibromyalgia (FM) are chronic pain syndromes occurring in highly stressed individuals. Despite the known connection between the nervous system and immune cells, information on distribution of lymphocyte subsets under stress and pain conditions is limited. Methods: We performed a comparative study in 15 patients with CRPS type I, 22 patients with FM and 37 age- and sex-matched healthy controls and investigated the influence of pain and stress on lymphocyte number, subpopulations and the Th1/Th2 cytokine ratio in T lymphocytes. Results: Lymphocyte numbers did not differ between groups. Quantitative analyses of lymphocyte subpopulations showed a significant reduction of cytotoxic CD8+ lymphocytes in both CRPS (p < 0.01) and FM (p < 0.05) patients as compared with healthy controls. Additionally, CRPS patients were characterized by a lower percentage of IL-2-producing T cell subpopulations reflecting a diminished Th1 response in contrast to no changes in the Th2 cytokine profile. Conclusions: Future studies are warranted to answer whether such immunological changes play a pathogenetic role in CRPS and FM or merely reflect the consequences of a pain-induced neurohumoral stress response, and whether they contribute to immunosuppression in stressed chronic pain patients. Copyright (c) 2008 S. Karger AG, Basel

    Differential Effects of HOXB4 on Nonhuman Primate Short- and Long-Term Repopulating Cells

    Get PDF
    BACKGROUND: Hematopoietic stem cells (HSCs) or repopulating cells are able to self-renew and differentiate into cells of all hematopoietic lineages, and they can be enriched using the CD34 cell surface marker. Because of this unique property, HSCs have been used for HSC transplantation and gene therapy applications. However, the inability to expand HSCs has been a significant limitation for clinical applications. Here we examine, in a clinically relevant nonhuman primate model, the ability of HOXB4 to expand HSCs to potentially overcome this limitation. METHODS AND FINDINGS: Using a competitive repopulation assay, we directly compared in six animals engraftment of HOXB4GFP (HOXB4 green fluorescent protein) and control (yellow fluorescent protein [YFP])–transduced and expanded CD34 (+) cells. In three animals, cells were infused after a 3-d transduction culture, while in three other animals cells were infused after an additional 6–9 d of ex vivo expansion. We demonstrate that HOXB4 overexpression resulted in superior engraftment in all animals. The most dramatic effect of HOXB4 was observed early after transplantation, resulting in an up to 56-fold higher engraftment compared to the control cells. At 6 mo after transplantation, the proportion of marker gene–expressing cells in peripheral blood was still up to 5-fold higher for HOXB4GFP compared to YFP-transduced cells. CONCLUSIONS: These data demonstrate that HOXB4 overexpression in CD34 (+) cells has a dramatic effect on expansion and engraftment of short-term repopulating cells and a significant, but less pronounced, effect on long-term repopulating cells. These data should have important implications for the expansion and transplantation of HSCs, in particular for cord blood transplantations where often only suboptimal numbers of HSCs are available

    The RD-Connect Genome-Phenome Analysis Platform: Accelerating diagnosis, research, and gene discovery for rare diseases.

    Get PDF
    Rare disease patients are more likely to receive a rapid molecular diagnosis nowadays thanks to the wide adoption of next-generation sequencing. However, many cases remain undiagnosed even after exome or genome analysis, because the methods used missed the molecular cause in a known gene, or a novel causative gene could not be identified and/or confirmed. To address these challenges, the RD-Connect Genome-Phenome Analysis Platform (GPAP) facilitates the collation, discovery, sharing, and analysis of standardized genome-phenome data within a collaborative environment. Authorized clinicians and researchers submit pseudonymised phenotypic profiles encoded using the Human Phenotype Ontology, and raw genomic data which is processed through a standardized pipeline. After an optional embargo period, the data are shared with other platform users, with the objective that similar cases in the system and queries from peers may help diagnose the case. Additionally, the platform enables bidirectional discovery of similar cases in other databases from the Matchmaker Exchange network. To facilitate genome-phenome analysis and interpretation by clinical researchers, the RD-Connect GPAP provides a powerful user-friendly interface and leverages tens of information sources. As a result, the resource has already helped diagnose hundreds of rare disease patients and discover new disease causing genes

    Self-perceived stress reactivity is an indicator of psychosocial impairment at the workplace

    Get PDF
    BACKGROUND: Work related stress is associated with a range of debilitating health outcomes. However, no unanimously accepted assessment tool exists for the early identification of individuals suffering from chronic job stress. The psychological concept of self-perceived stress reactivity refers to the individual disposition of a person to answer stressors with immediate as well as long lasting stress reactions, and it could be a valid indicator of current as well as prospective adverse health outcomes. The aim of this study was to determine the extent to which perceived stress reactivity correlates with various parameters of psychosocial health, cardiovascular risk factors, and parameters of chronic stress and job stress in a sample of middle-aged industrial employees in a so-called "sandwich-position". METHODS: In this cross-sectional study, a total of 174 industrial employees were assessed for psychosocial and biological stress parameters. Differences between groups with high and low stress reactivity were analysed. Logistic regression models were applied to identify which parameters allow to predict perceived high versus low stress reactivity. RESULTS: In our sample various parameters of psychosocial stress like chronic stress and effort-reward imbalance were significantly increased in comparison to the normal population. Compared to employees with perceived low stress reactivity, those with perceived high stress reactivity showed poorer results in health-related complaints, depression, anxiety, sports behaviour, chronic stress, and effort-reward imbalance. The educational status of employees with perceived low stress reactivity is higher. Education, cardiovascular complaints, chronic stress, and effort-reward imbalance were moderate predictors for perceived stress reactivity. However, no relationship was found between stress reactivity and cardiovascular risk factors in our sample. CONCLUSIONS: Job stress is a major burden in a relevant subgroup of industrial employees in a middle management position. Self-perceived stress reactivity seems to be an appropriate concept to identify employees who experience psychosocial stress and associated psychological problems at the workplace

    GA4GH: International policies and standards for data sharing across genomic research and healthcare.

    Get PDF
    The Global Alliance for Genomics and Health (GA4GH) aims to accelerate biomedical advances by enabling the responsible sharing of clinical and genomic data through both harmonized data aggregation and federated approaches. The decreasing cost of genomic sequencing (along with other genome-wide molecular assays) and increasing evidence of its clinical utility will soon drive the generation of sequence data from tens of millions of humans, with increasing levels of diversity. In this perspective, we present the GA4GH strategies for addressing the major challenges of this data revolution. We describe the GA4GH organization, which is fueled by the development efforts of eight Work Streams and informed by the needs of 24 Driver Projects and other key stakeholders. We present the GA4GH suite of secure, interoperable technical standards and policy frameworks and review the current status of standards, their relevance to key domains of research and clinical care, and future plans of GA4GH. Broad international participation in building, adopting, and deploying GA4GH standards and frameworks will catalyze an unprecedented effort in data sharing that will be critical to advancing genomic medicine and ensuring that all populations can access its benefits

    The Human Phenotype Ontology in 2017.

    Get PDF
    Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human Phenotype Ontology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology

    Determining crystal structures through crowdsourcing and coursework

    Get PDF
    We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality
    corecore